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Abstract. Learning in  the context of attractor neural networks means finding a synaptic 
matrix jt, for which a cenain set ofconfigurations are B l e d  points ofrhe netwart dynamics. 
This is achieved by a number of learning algorithms designed to satisfy certain constraints. 
This process can be formulated as gradient descent dynamics to the ground state of an 
energy function, corresponding to a specific algortihm. We investigate neural networks in 
the range of parameters when the ground-state energy is positive; namely, when a synaptic 
matrix which satisfies all the desired constraints cannot be found by the learning algorithm. 
In particular. we calculate the typical distribution functions of local stabilities obtained 
for a number of algorithms in this region. There functions are used to investigate the 
retrieval propertiesas reflected bythesize ofthe hasinsofattraction. This is doneanalytically 
in sparsely connected networks, and numerically in fully connected networks. The main 
conclusion of this paper is that the retiieval behaviour of attractor neural networks can he 
improved by learning above saturation. 

1. Introduction 

The neural networks, which have attracted so much attention as models of associative 
memory, constist of N binary neutrons connected by synaptic couplings Jb.  The 
probability of neuron i to be, at time t +  1, in one of the two states S; = +1 (active) or  
Si = -1 (idle) is given by 

P ( S i )  = [ I  +exp( -2@Slh i ( f ) ) ! - '  (1 )  

where hi is the local field at the previous time step 

and p is a parameter related to the synaptic noise. In the absence of noise, when 
p + 00, the dynamics reduces to 

S , ( t +  1) = sgn[h,(f)]. (3) 
The basic idea is that any cognitive response is represented by a dynamical flow 

leading to  an attractor of the network dynamics. In  particular, the network serves as 
a model for associative memory, if a set of specified configurations, 15: = * I )  
( i  = 1,. . , , N ;  p = 1,. . , , p ) ,  which are representations of the memorized concepts, are 
nrtmrtnrr .*Fib- -nt.srnrl, A . m n m i r c  T h i c  m P P n c  thnt  c t n r t i n o  frnm iln initi.1 mnfionnr. 

ation {S,}, which has a sufficiently large overlap with one of the memorized patterns, 
the system will flow to that pattern as a fixed point of dynamics, or  in the presence of 
noise the system will fluctuate in a close neighbourhood o f  that pattern in configuration 
space. 

", L,fib I.II*,".R ",..., .... ..". .... " ...- ".." ...-., ".l ..... ~ .." ~ " .  

n-nc r r ,n ln>in ,n7, lcr? ,nP* l  CA 0 !ss1 !op P.h!irhing L!d 715 ",",-n,",7,i",",,, I"D"_I.I" 
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Learning in the context of neural network models means finding a synaptic matrix 
J,, which ensures a dynamical behaviour leading to specific attractors. The task is to 
organize the space of network states in basins of attraction around a priori known 
memory states. 

In the history of attractor neural networks there have been two lines of approach 
to this problem. The first, following the work of Hopfield (1982, 1984), assumes a 
specific form of the J,,’s on the stored patterns. The study of this line of approach 
focused on the performance of the network in  the retrieval mode (Amit et a1 1985, 
1987). In the other approach, following the work of Gardner (1988), instead of making 
an ansatz about the form of the J ,  matrix, one considers the Jq‘s as dynamical variables, 
which are modified by a learning algorithm to satisfy certain constraints. 

Learning as  a n  error correction process. Gardner’s (1988) approach to the problem of 
learning, leading to a statistical mechanics formulation in the space of J , ,  starts from 
the requirement that a set of p chosen patterns { C Y } ,  i = 1, N; @ = 1,. . . , p ,  are fixed 
points of the dynamics (3). This is clearly guaranteed when 

for every i and fi. We shall refer to the expressions on the left-hand side of these 
inequalities as the local stabilities. They are proportional to the local field on site i 
when the network is in state {cy} .  This state is a fixed point even for K = 0, but a finite 
K is required to ensure significant basins of attraction. When K Z 0, it is necessary to 
constraint the synaptic matrix in order to avoid the freedom in K due to an overall 
scaling of the inequalities. A commonly used constraint is 

The search for a matrix J ,  which satisfies ( 3 )  and (4), proceeds by an error correction 
process. One defines the parameters 

where O(x) is the step function: O(x) = 1 for x >  1, and O(x) = O  otherwise. Starting 
from an initial 3 ; ,  the current value of 1, is modified, for each pattern and at each 
site, by 

(6) 

Thus, J,, is changed only when E :  = 1, namely only in order to correct an ‘error’, when 
the corresponding inequaltiy is not satisfied. The range of possible choices of the 
functions f ( A f )  has recently been discussed in a review paper by Abbott (1990). Let 
us mention here two cases. 

( a )  f ( A : ) =  y. This is the perceptron algorithm, with step-size y, which has 
originally been formulated for the two-layer (perceptron) network (Rosenblatt 1962, 
Minsky and Pappert 1988). Gardner (1988) has shown that this algorithm can be 
applied to multiply connected networks and that the convergence theorem, which 
guarantees that a solution is found by this procedure in a finite number of steps if 
such a solution exists, can be extended to this case with a finite K. 

1 
AJ!, =x E Y f  (AY)C:t,”. 
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(6) f ( A ? )  = Y ( K  -A?) .  This is the relaxation algorithm. It is a modification of an 
algorithm suggested recently by Abbott and Kepler (1989a). It converges (if a solution 
exists) for 0 < y s 2. 

Gardner (1988) has shown that for a set of random uncorrelated patterns {cy},  a 
matrix Jq, which satisfies (40) and (46), exists with probability approaching 1 as 
N + 00, if the storage parameter (Y = P I N  does not exceed the critical storage capacity 
( Y ~ K ) .  In particular, a,=2 for K = O .  For a given a, this defines a critical K J C Y ) .  For 
example, K J  1.0) = 0.5 and ~ ~ ( 0 . 5 )  = 1.0. 

Any matrix which satisfies equations (4) will have the stored patterns as fixed 
points. This, however, does not guarantee the performance of the network as a useful 
model for associative memory. The latter depends on the behaviour of the network in 
the retrieval mode, where the relevant questions are the size of basins of attraction 
and the stability of attractors to synaptic noise. A useful measure, which characterizes 
this behaviour is the distribution function of the stability parameters A:. Its effect on 
the basins of attraction was investigated by Kepler and Abbott (1988), Gardner (1989) 
and by Krauth et a /  (1988a), and its effect on the stability to synaptic noise was studied 
by Amit ef a/ (1990). It is clear that higher weight at larger values of A implies higher 
stability. One way to achieve this in a learning algorithm is to increase K in (4) as 
much as possible. Krauth and Mezard (1987) suggested a modification of the perceptron 
algorithm, which finds a matrix Jq, for which these inequalities are satisfied with the 
largest possible K.  

The question to be addressed in this paper is: is it of advantage to increase K even 
further, violating some of these inequalities, but improving thereby the retrieval 
properties? 

Learning as  an optimization process. To investigate the problem of learning in the 
domain K > K ~ ,  it is more convenient to consider the learning as an optimization process 
rather than as an error-correcting process. To this end one defines, in the space of 
matrices JG, a cost function E({J)), which has a global minimum at the desired J,. 
A discretization of the gradient descent dynamics associated with the cost function, 

%J, %E 
a t  %J, (7 )  

defines a learning algorithm which leads to the minimum E, provided that this function 
has a sufficiently smooth surface in the space of J,. To calculate this minimum, one 
assigns to each synaptic matrix a Boltzmann probability and defines the partition 
function, just like in the canonical formulation of statistical mechanics, as 

where we have introduced explicitly the normalization condition (46). Due to the 
obvious analogy, we shall refer to the cost function, occassionally, as an  'energy'. The 
minimum 'energy' is given, as usually, by 

Ea= - (9) 

where the average is over the possible realizations of the patterns {5r] 
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2. Specific choices of the cost function 

The cost function E can usually be written as a sum of local terms for each pattern ,A 

M Griniasty and H GuiJreund 

E = E  V(A:) (10) 
!.U 

We shall investigate several cases of the function V(A) .  

2.1. The Gardner-Derrida cost function 

V ( A ) = B ( K - A ) .  (11) 

In this case the energy is just the number of errors in the learning process. It was 
used by Gardner and Derridda (1988) to estimate the lowest possible fraction of 
unsatisfied inequaltities (4) when a > a c ( K ) .  Note, however, that this cost function 
does not define a gradient-descent algorithm leading to a solution corresponding to 
the lowest fraction of errors. 

2.2. The perceptron cosi function 

V(A)  = ( K  - A ) B ( K  - A ) .  

This form takes into account the degree by which each unsatisfied inequality is 
violated. Discretization of the relaxation dynamics (7) defines a learning algorithm, 
in which the J ,  are modified by 

where E? is defined in (5). Except for the second term, which is due to the normalization 
condition (46), this is just a version of the perceptron algorithm in which the patterns 
are learned in parallel. 

2.3. The adairon cost function 

V(A)  ( K  -A)’@(K - A )  

This modification of the previous form leads to the algorithm 

which is the relaxation algorithm, mentioned above, in which the patterns are learned 
in parallel. 

A learning algorithm based on a modification of the cost function in (14), without 
imposing the normalization condition on the synaptic matrix and replacing K by 1 ,  
has been recently investigated by Anlauf and Biehl (1989), who proposed the term 
‘adatron algorithm’ as a combination of the perceptron and the adaline (see below) 
algorithms. They show that whenever a solution with zero ‘energy’ exists, this algorithm 
will find one with the highest minimal stability. This is achieved significantly faster 
than by the minover algorithm of Krauth and Mezard (1987). 

In all the three cases, discussed above, E(,= at U < G ~ ( K ) ,  when all the constraints 
(4) are satisfied. At a > a,,  they have different ground-state energies. 
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2.4. 7'he adaline cost function 

The three forms of the cost function, listed above, correspond to the constraints (4). 
When the inequalities in these constraints are replaced by equalities, the appropriate 
cost function is 

V =  ( K -A)2.  (16) 

The J,j's are modified, by the gradient-descent dyanmics, just as in ( 1 5 ) ,  except that 
this is done at each step, regardless of whether a specific inequality is satisfied or not 
(the masking parameter E i s  now missing). 

A modification of this cost function, in which K is set to one and the synaptic 
matrix is not normalized, leads to the adaline learning algorithm, introduced originally 
by Widrow and Hoff (1960). This algorithm has been studied extensively. It was 
shown (Diederich and Opper 1987) that it leads to the pseudo-inverse synaptic matrix 
(Personnaz et a; i985, Kanier and Sompoiinsky i987j. T i e  dynamics of this 
algorithm has been studied by Hertz et a /  (1989) and Kinzel and Opper (1990). 

3. Theory-general 

1115 Ldlc"laL,uII  U, L11C l l l l l l l l l L U l l l  "1 F I I S I ~ y  (7,,  I I I Y U I V C S  L U G  *vc,agc U1 , I1  l. U Y C ,  a,, 
the possible realizations of the patterns {t f} .  Such averages are frequently encountered 
in statistical mechanics and are treated by the replica method, represented by the identity 

TL^ -'-.L- -:-: -'-'---- -... ,n, : 1 .L^ - c  I.. 7 ̂ ..._^I, 

(Z")-l  
(In Z) = lim - 

,,-U n 

~~~, ..-. T O  I -  _.~- ~-.-:.:.- .c ~. : > ~ ~ . . - - ,  ~ ~ ~ , : . - -  . C . . ~ ~  ~~~~.~~~~ TL. 1 ~ ~ ~ . -  wnere L is i n r  paruwn runwon 01 n lueniicai replicas UI  rne sysrem.  ne oasic 
parameter, which appears in the calculation is the overlap between ground-state 
configurations in two replicas 

_. i n e  treafment is panicuiariy simpie if one assumes tnat aii the repiicas have identicai 
ground states. This assumption is known as the replica symmetric approximation, in 
which qeB reduces to a parameter q. When the number of stored patterns increases, 
the number of ground-state configurations increases, and q+ 1,  indicating the limit of 
a single such configuration. 

The calculation, which by now has become standard, leads in the replica symmetric 

( Z n ) = e x p [ n N ~ G ( n ,  x)] (19) 

appioxiiiiaiioii aiid iii the liiiiii q i  l ,  io the expiej.j.ioii 

where 

G ( q x ) = - - + -  Dtiog dA exp[-qF(A,x,t)] 
2x ' " 5  7, I 

The function in the exponent is 

(21) 
(A  -t)' 

F ( h ,  x, t )  = V(A)+- 
2x 
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and we have defined x = v (  1 - 4). Here, and in what follows 
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The function G ( a ,  x)  has to be calculated at the saddle point with respect to x. In the 
limit 7 +a, the integrand is dominated by the minimum of F (  A, I )  obtained at some 
value Ao( I). Thus, in this limit 

G(a,x)=-- -+a d t F ( A o ( x ,  t ) ,X,  1 ) .  (22) 2x l I  

In view of (9). (17) and (19), G(a,  x )  is indeed the minimum energy, provided that x 
assumes its saddle-point value. Equating the derivative of G(a,  x) with respect to x 
to zero, one finds 

a-' = DI(A,(x, t ) -  (23) 

For given a, this equation determines x. Inserting this relation into (22), one gets a 
compact expression for the ground-state energy per site per pattern 

I 
I E,= DI V(A,(x, 1 ) ) .  (24) 

The critical storage capacity ac, is defined as the maximum storage for which the 
ground-state energy is zero. In view of (22) this corresponds to x = m. As a > a', x 
becomes finite and decreases. 

Distribution of local stabilities. The distribution of local stabilities, in the state of 
minimum energy, is given by 

p(A)= lim (a(A-A?)),,< (25) 

where the average over J ,  is performed, again, with the Boltzman probability subject 
to the normalization condition, and the average on 5 is over the possible realizations 
of the stored patterns. The calculation proceeds along the lines of Kepler and Abott 
(1988). The result is 

I-- 

where the values of x is determined from (23). The function p,(A) is normalized to 
unity and sharply peaked around the minimum of E Thus, 

, 
p(A)=  DlS(A-A0(x, I)). (27) 

Multiplying this equation by V(A) and integrating over A, one finds a natural expression 
for the ground-state energy 

J 
, 

Eo= dA V(A)p(A). (28) J 
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Stability to replica symmetry breaking. The calculation, leading to Eo, is based on the 
replica symmetric approximation. This approximation is valid as long as the fluctuation 
matrix in replica space, around the replica symmetry solution, is positive definite. The 
criterion for the stability of this solution can be cast in the same form as in Gardner 
and Derrida (1988) 

aY,Y,<1. (29) 

The calculation of yz proceeds along similar lines, and the result for a general cost 
In the limit 9 + 1; one gets just as there, y: = (1 - 0)'. 

function is given by 

4. Theory-specific cost functions 

Let us now apply the results of the last sections to study the specific energy functions, 
mentioned in the introduction. 

4.1. 7'he Gardner-Derrida cost function 

This case has been studied previously and the results for the fraction of errors, stability 
to replica symmetry breaking (Gardner and Derrida 1988) and the distribution of 
stablities (Amit et a1 1990) are known. We discuss it here only for completeness, in 
order to show how it fits into the general framework developed above. 

The key parameters, h,(x. 1 )  and F(A,,  x; 1 ) ;  are 

A u =  1 F(Ao, X, 1 )  = 0 for I>K 

A " =  K F(Ao, X, 1 )  = ( K - t ) 2 / 2 X  for K -6< I <  K (31) 
h o =  1 F(Ao, X, 1 )  = 1 for 1 c K -6. 

From (221, one finds, 

For a given a and K, the value of x is determined, using (23), by 

We wish to point out that our definition of the parameter x differs from that of 
Gardner and Derrida (1988). To compare with their results one has to replace 6 
by x. 

The distribution function, p(A), i s  easily derived from (27). as 

1 
2?r 

p i e )  = [ E < K  -&) - i i ( K ) ) j 8 ( L i - K ) + -  e L V ( U -  K )  e ( K  -V%-b) j  (34j 

r A- 
where 

H ( y ) =  J Dt. 
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In addition to the 8-function and the truncated Gaussian at A >  K, which also appear 
in p(A) at a =a,(.) (Kepler and Abbott 1988, Gardner 1989, Krauth et al  1988b), we 
now get a contribution at negative values of K, separated by a gap of & from the 
A =  K. It was pointed out by Amit et a/ (1990) that this part of p ( A )  has a destructive 
effect on the basins of attraction. The distribution function, p(A), is shown, for K = 1 
and a =0.55, in figure l (a) .  

Since p ( A )  is normalized to unity, we can deduce the fraction of unsatisfied 
inequalities (4) from 

M Griniasfy and H Gutfreund 

which in our case gives 

~ = H ( & - K ) .  (36) 
All these results are valid as  long as the replica symmetric solution is stable. Based 

on (28)-(30), this is the case when 

a(" D t < l  
x -a 

4.2. The perceptran cost function 

Going through the same procedure as before, we find 

\ A o = t  F ( A , , x , t ) = O  
A " = K  F(Ao, X, /) ( K  - / ) 2 / 2 X  

A o =  t + x  F(A,,  x, 1 )  K - l - x / 2  \ 
The relation between a and x is now given by 

1 = a  D t ( t - K ) ' +  ax'H(X- K) 

and the distribution of stabilities is 

p ( A )  = [ H (  K - x) - H (  K ) ] 8 (  A - K )  + - e-"'* O(A - K )  
1 
6 

(37) 

(39) 

The main difference to the previous case is that there is no gap in p ( A ) ,  and the 
stabilities, corresponding to the violated inequalities (4), are concentrated in a truncated 
Gaussian below K .  This is shown in figure l ( b ) ,  for the same parameters as in the 
previous model. The fraction of errors is in this case 

f = H ( x - ~ ) .  (41) 
The replica symmetric approximation is valid when 

(42) 

The boundary line for replica symmetry breaking is compared in figure 2 with the 
corresponding line for the previous case (37). The region of validity of the replica 
symmetric approximation, is in the present case, significantly larger. 
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A 

5 pliI: 0 - 1  0 1 d 2 3 4 

Figure 1. The distribution of local stabilities at e = O S 5  and I = I for the Gardner-Derrida 
( 0 ) .  perceplron ( b )  and adatron ( c )  cost functions. The numbers in ( a )  and ( h )  indicate 
the height of the S-function. 
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0 1 

---------I __--- 

I LULL 5 
4 

0 

Figure 2. The critical line for replica symmetry breaking for the Gardner-Derrida (shon- 
broken curve) and the perceptron (long-broken Curve) cost function. The full curve is the 
me(.) line. 

4.3. The adafron cosifunction 

In this case 

h o = f  F ( A o ,  x, t )  = 0 for f >  K 

hO=(2x~+t ) / (2x+1)  F(&, x, /) = {(K - /)*}/(2x+ 1) for i<K.  (43) 

The equation for x is 

and the distribution function, p(A), is given by 

Note, that there is no &function contribution at A = K, for any finite x. This function, 
evaluated at K = 1 and a = 0.55, is shown in figure l (c) .  When x+m, namely at a = %, 
the second term shrinks into a &function, and one gets the known result on the critical 
line ~ J K ) .  The fraction of errors is obtained by integrating the second term, 

~ = H ( - K ) .  (46) 

We find the surprising result that the fraction of errors jumps discontinuously at 
a = ~ J K )  and is then indepenent on a. This feature has also been pointed out by 
Anlauf and Biehl (1990). 

The fraction of errors as function of K, in the last three cases, is shown in figure 3 
for a = O S .  

To check the criterion for stability to replica symmetry breaking, we find from (29) 
and 30, 
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0.8 1 

0.2 

0 1 2 3 L 
x 

Figure 3. The fraction of errors in learning as function of I( far OL = 0.5, for the Gardner- 
Derrida (full curve) the perceptran (shan-broken curve) and the adatron (long-broken 
curve) cost functions. 

Using (44). one gets 
m -I 

ay,y2=H(-K)(j-N Dr(r+K) ’ )  s l  (48) 

where the equality sign holds only for K = 0. Thus, there is no replica symmetry breaking 
for any finite K, and replica symmetry stability is marginal when K = 0. 

The distribution of local fields on the critical line a,(.) is the same in the three 
cases considered above, since, according to the classification of Abbott and Kepler 
(1989b) they belong the same universality class. The result is, however, very different 
away from this line. 

4.4. The adaline cosf function 

In this case 

ha=  (2XK + 1)/(2X+ 1) F(A,,, X, 1 )  = (1 -~ ) ’ / (2x+  I )  for all f (49) 

and the relation between x and a, derived from (23), is 

2x+1  1 a =  - - ( 2x 1 1+K2 

At x+m, we get the critical storage capacity aC= ( l+~~)- ’ .  The distribution function 
of local stabilities, obtained from ( 2 6 ) ,  is 

(51) 
2 x + 1  

P ( A )  == exp{ -f[(2x+ ~ ) A - ~ x K ] ’ ) .  

On the critical line, when x+m,  this reduces to 

~ ( A ) = ~ ( A - K ) .  ( 5 2 )  

A straightforward calculation of (30). together with (29) and (SO), gives 
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so that the replica symmetric approximation is valid for K > 0 and is marginally stable 
at K = 0. 

4.5. 7%e ‘Hopfield’ cost function 

Finally, as a pedagogical example, let us consider the cost function 

M Griniasfy and H Gurfreund 

V = - A .  (54) 
The minimum of (21) is, in this case, obtained for all f at A o =  I + L  Inserting this into 
the equation for G, and taking the saddle-point value with respect to x, we find the 
relation between a and x, to be x = &, and (27) gives immediately, 

p(A) = JT;; exp[ - f ( A  -$= )2 ] .  ( 5 5 )  

This is exactly the distribution of stabilities in the Hopfield model (Abbott and Kepler 
1989b). 

5. Basins of attraction 

The time evolution of the system can be characterized by the overlaps of the network 
states, at time 1, with the learned patterns 

1 
m,( 1 )  =- 2 (fS<(f). 

N i  
(56 )  

An external stimulus is recognized as the concept p if it imposes an initial state, which 
after some time drives the network to the attractor corresponding to this concept, 
namely, if asymptotically m, = 1 and all the other overlaps are small. The smallest 
value of m,(f  = 0), which still leads to the corresponding attractor is a measure of the 
radius of the basin of attraction. 

The overlap at time f + 1, after one synchronous time step of the network dynamics, 
is related to m ( f )  by 

where erf is the error function 

( 5 8 )  

In networks with asymmetric random sparse connectivity (Derrida et a1 1987) in 
which each neuron is connected, on the average to C other neurons, so that C = log N, 
(57) determines completely the dynamics of overlaps and can be iterated to its fixed 
point. This allows an analytical study of the static retrieval properties of such networks 
(Gardner 1989, Amit er a /  1990). 

Sparsely connected networks. We have calculated the fixed point overlaps of the dynami- 
cal equation (56), for the stability distributions associated with the cost functions 
discussed above. There are three possible scenarios. 

( a )  A single stable fixed point at zero. This corresponds to the lack of any retrieval 
capability. 
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(b) An unstable fixed point at zero and a stable one at m*>O.  This represents a 
region of retrieval (the closer mL to unity, the better the quality of retrieval) in which 
m* is reached starting from any configuration for which the initial overlap with the 
target pattern is m( t = 0) > 0. We shall refer :o this case as retrieval with a full basin 
of attraction. 

( c )  Two stable fixed points at zero and m*>O, and one unstable fixed point at 
O <  ma< m*. In this case m* is reached only when starting from a configuration with 
m ( t = O ) >  m,. We shall refer to this case as retrieval with a partial basin of attraction. 
The size of the basin is characterized by m,. 

Figure 4( a )  shows the retrieval phase diagram in the a - K plane for the perceptron 
cost function. Retrieval above the critical line a c ( K )  is possible only at storage levels 
below unity. The replica symmetric approximation is valid (see figure 2) in the entire 
region where m* > 0. In figure 4(b) we examine the dependence of m* and m, as 

Figure 4. ( a )  Retrieval phase diagram for sparsely connected networks in case o i  the 
perceptron cost function. The full curve separates regions of retrieval and no retrieval. The 
long-broken curve separates between regions of full and panial basins of attraction. The 
short-broken curve is the curve eC(#). ( h )  Values o i  the fixed point overlap m* (upper 
curve) and the overlap m,, (lower curve), at the boundary o i  the basin of attraction, for 
OL = 0.5. 
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function of K for a = 0.5. Since we are interested in the behaviour above saturation, 
the curves start at K = 1, which is the critical value of K at this n. One observes that 
beyond the critical line the size of the basin of attraction increases but the quality of 
retrieval decreases. 

The same calculation, for the adatron cost function, is presented in figures S(a), 
(b). One finds that in this case the region of retrieval above the critical line is larger 
than in the previous case. Moreover, the retrieval properties (again for a = 0.5) that 
the basin of attraction increases when K is increased beyond K ,  and m* is still very 
close to one. This continues to be the case even above K = 1.9 which is the region of 
a full basin of attraction. 

The results for the adaline cost function are shown in figures 6 ( a ) ,  ( b ) .  Unlike the 
previous two cases, there is now a significant region of retrieval beyond saturation 
also at  high storage level. It is even possible, at low K, to increase slightly the maximum 
storage capacity. The retrieval properties beyond K ~ ,  at a =OS, are similar to the 
previous case. 
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Figure 5. Same as figure 4, for the adatran cost function. 
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Figure 6. Same as figure 4, for the adaline cost function 

For the adaline case we also plot m, and m* for a fixed K = 2 as a function of U 
(figure 7). One gets perfect retrieval with a full basin of attraction well above the 
critical storage (a =0.2) at  this K .  Only at a = 0.52 does m, begin to increase (the basin 
of attraction decreases) until there occurs, a t  a 

Fully connected networks. In fully connected networks the relation ( 5 6 )  is valid only 
for a single time step. Kepler and Abbott (1988) suggested that it may, nevertheless, 
be used to estimate qualitatively the basins of attraction. They found, from numerical 
simulations, that an initial configuration with an overlap m,(O) with pattern p will 
ultimately flow to this pattern, if the system goes in one time step more than half way 
to the desired attractor, namely, if 

0.67, a sharp transition to m* = 0. 

Rather than using this relation fora qualitative comparison ofthe retrieval properties 
below and above saturation, we shall demonstrate the effect by numerical simulations. 
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Figure 7. Values of m' (upper curve) and m, (lower curve), for the adaline cost function, 
at fixed li = 2  as a function of e. 

We present results for the perceptron, adatron and adaline cost functions, obtained 
on networks of size N = 200 with 100 random uncorrelated patterns ( LY = 0.5). In each 
case, a J ,  matrix is found by the corresponding algorithm. The latter is then used to 
calculate the distribution of stabilities and the size of the basins of attraction 

Figure 8 ( a )  shows the distribution of stabilities at K =0.8 and K = 1.2, obtained 
with the perceptron algorithm, after averaging over several runs. The lower value of 
K is slightly below saturation. In finite systems it is hard to find zero-energy solutions 
significantly closer to the theoretical critical value ( K ~ =  1.0). The higher value of K is 
well above saturation. The learning process, in this case, continues until the energy, 
computed at each step, no longer decreases. The final energy is 0.075, which should 
be compared with the theoretical value (for these (I and K )  of 0.072. The theoretical 
fraction of errors in learning, which is the integrated weight below K ,  is in this case, 
f=0.141. In simulations we expect that about one half of the weight in the 8-function 
(which in this case is 0.744) is shifted below K.  Thus, we expect a fraction of errors 
of f=0.51.  The empirical value is 0.53. In figure 8(b )  we show the overlaps of the 
fixed-point configurations, reached by the network dynamics (3),  with one of the stored 
patterns, as a function of the initial overlap with that pattern. Each point is a result 
of averaging over 200 cases. One observes that, in this case, the stored patterns 
themselves are not fixed points of the dynamics and they flow to very close 
configurations with m* = 0.97. This is due to the long tail in the distribution of stabilities, 
which extends to negative (though very small) values. We wish to point out, in passing, 
that the shape of p ( A )  for this algorithm is different from the theoretical form, which 
is obtained by averaging over all the possible solutions to the learning problem, and 
predicts a Gaussian tail above K .  In the present case, the maximum is above the 
threshold due to the fact that in the perceptron algorithm we keep modifying the 
interaction matrix by the same increment until the last memory is stabilized. In this 
process we reach local stabilities, which are significantly larger than necessary, if the 
goal is merely to satisfy the constraints (4).  

Figure 9 ( a ) ,  ( b )  shows the same results for the relaxation algorithm, corresponding 
to the adatron cost function. The energy reached at K = 1.2 is 0.02 while the theoretical 
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Figure S. (a) The distribution of local stabilities at I =0.8 (open triangles) and K = 1.2 
(full triangles), obtained with the perceptron algorithm on networks of  N =ZOO with 100 
stored uncorrelated patterns. ( b )  Fixed-point overlaps with the stored patterns as 3 function 
of the initial overlaps, averaged over 200 cases, for valuer of x corresponding to ( a ) .  

value is 0.018. The empirical fraction of errors is 0.87, which should be compared with 
the theoretical f=0.885. The tail of the distribution function below K is much shorter 
than in the previous case, and is confined to positive values. The stored patterns, and 
configurations in significant neighbourhood around them, are therefore stable. Note 
that, unlike the previous case, with this algorithm the distribution of stabilities has the 
theoretical shape. 

In figures lO(a), ( b )  we present similar results for the adaline algorithm at K = 1 
and K = 1.8. The lower value correspond to the critical K for n = 0.5, and the theoretical 
distribution of stabilities should be a &function. At higher values of K i t  broadens 
into a Gaussian distribution. For a = 0.5 and K = 1.8, we expect the average of the 
Gaussian to be at K 1.2 (from (50), (51)). This is indeed the case. The expected 
ground-state energy is 0.416. We find a value of 0.42. One observes again, even more 
than in the previous cases, that the basins of attraction are significantly increased in 
networks above saturation. 
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Figure 9. Same as figures S ( a ) , ( b ) ,  for the relaxation algorithm, corresponding to the 
adatron cost function. 

6. Conclusion 

We have investigated several learning algorithms, formulated as gradient-descent 
dynamics of corresponding cost functions. These algorithms are well known and have 
been studied previously. These studies have, generally, been confined to the range of 
parameters below saturation, when the algorithms converge to solutions with zero 
'energy', namely, when all the constraints of the learning problem are satisfied. The 
basic contribution of the present work is the emphasis on the region in the (a, K)-plane, 
where this cannot be achieved. 

We have explored the retrieval properties, at zero noise, in sparsely connected 
networks above saturation. For the algorithms associated with the perceptron and 
adatron cost functions, we find that retrieval is possible only at storage levels sig- 
nificantly below the critical storage capacity a,=2. At these storage levels, it is of 
advantage to increase K above its critical value and to improve thereby the retrieval 
behaviour. However, it is not possible to increase the storage capacity by allowing 
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Figure IO. Same as figures 8 ( a ) ,  ( b )  for the adaline algorithm, except that now the open 
triangles correspond to K = 1 and the full ones lo Y = 1.8. 

errors in learning. The same conclusion was reached by Amit et al (1990), who studied 
the Gardner-Derrida cost function. On the other hand, for the adaline algorithm, 
retrieval is possible near and slightly above the critical storage capacity, which in this 
case is c1,= I. 

The properties of fully connected networks are very different from those of their 
sparsely connected counterparts. This was learned long ago by comparing the behaviour 
of the Hopfield network with its dilute version (Derrida er a1 1987). We have not 
performed an extensive study, based on the empirical relation (59) or on numerical 
simulations, of the retrieval phase diagram for the fully connected networks. Instead, 
we have demonstrated the advantage of learning beyond saturation by specific examples 
of results of numerical simulations. A more systematic study of this problem will he 
discussed elsewhere. 

We have concentrated, in this work, on attractor networks, but the methods and 
results are also relevant for feedforward networks, in particular, for a simple perceptron 
network. For example, in autoassociation problems the single-step dynamics of overlaps 
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(57) defines the mapping from the input to the output layer. A question of interest, in 
this context, is what algorithm guarantees the highest overlap in one time step. This 
problem will be discussed in a separate publication. 
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